Connected Vehicle Applications Targeted for Environmental Improvements

2013 ITS California Annual Meeting
San Diego, California
October 1, 2013

Matthew Barth, Professor
University of California-Riverside

Acknowledgements: UCR Research Team, AERIS Research Team, Marcia Pincus, RITA, FHWA
Approaches to Minimize Energy and Emissions Impacts of Transportation:

• **Build cleaner, more efficient vehicles:**
 • make vehicles lighter (and smaller) while maintaining safety
 • improve powertrain efficiency
 • develop alternative technologies (e.g., hybrids, fuel-cell, electric vehicles)

• **Develop and use alternative fuels:**
 • Bio and synthetic fuels (cellulosic ethanol, biodiesel)
 • electricity

• **Decrease the total amount of driving:** **VMT reduction methods**
 • Better land use/transportation planning
 • Travel demand management

• **Improve transportation system efficiency**
 • Intelligent Transportation System (ITS) technologies
 • Connected Vehicles → Vehicle Automation
Key ITS Research Areas with Energy/Emissions Impacts

Advanced Vehicle Control and Safety Systems: *Vehicles*
- Longitudinal and Lateral Collision Avoidance
- Intersection Collision Avoidance
- Adaptive Cruise Control, Intelligent Speed Adaptation
- Automated Vehicles and Roadway Systems

Advanced Transportation Management Systems: *Systems*
- Traffic Monitoring and Management
- Corridor Management
- Incident Management
- Demand Management and Operations

Advanced Transportation Information Systems: *Behavior*
- Route Guidance
- En-Route Driver Information
- Traveler Service Information → connection to Transit
- Electronic Payment Services → variable pricing
Connected Vehicles: providing better interaction between vehicles and between vehicles and infrastructure

- Safety Pilot Study
- DMA (Dynamic Mobility Applications)
- AERIS (Applications for the Environment and Real-Time Information Synthesis)

Objectives:

- Identify connected vehicle applications that could provide environmental impact reduction benefits via reduced fuel use, more efficient vehicles, and reduced emissions.

- Facilitate and incentivize “green choices” by transportation service consumers (i.e., system users, system operators, policy decision makers, etc.).

- Identify vehicle-to-vehicle (V2V), vehicle-to-infrastructure (V2I), and vehicle-to-grid (V2G) data (and other) exchanges via wireless technologies of various types.

- Model and analyze connected vehicle applications to estimate the potential environmental impact reduction benefits.

- Develop a prototype for one of the applications to test its efficacy and usefulness.
The AERIS Approach

Concept Exploration
Examine the State-of-the-Practice and explore ideas for AERIS Operational Scenarios

Development of Concepts of Operations for Operational Scenarios
Identify high-level user needs and desired capabilities for each AERIS scenario in terms that all project stakeholders can understand

Conduct Preliminary Cost Benefit Analysis
Perform a preliminary cost benefit analysis to identify high priority applications and refine/refocus research

Prototype Application
Develop a prototype for one of the applications to test its efficacy and usefulness.

Modeling and Analysis
Model, analyze, and evaluate candidate strategies, scenarios and applications that make sense for further development, evaluation and research

Where we are today
5-year Program
3 Years into Research
AERIS Program Status

- Foundational Research – Complete
 - Broad Agency Announcement (BAA) Projects
 - State-of-the-Practice Reports (applications, modeling, and eval techniques)
- Initial Benefit Cost Analysis – Complete
 - Identified key assumptions for evaluation
 - Benefit-cost results were used to prioritize applications for additional analysis
- Concept of Operations Documents – Complete
 - Eco-Signal Operations; Eco-Lanes; Low Emissions Zones
- Modeling and Evaluation – Ongoing
- US/EU Sustainability Working Group (SWG) – Ongoing
 - Developing White Papers that compare and contrast various aspects of US and EU connected vehicle research
 - Demonstration of a jointly developed application at the 2015 ITS World Congress in Bordeaux, France
System Activities:

- advanced signal control
- I2V-based communications
- I2V & V2I communications
- network equilibration

Arterial Data Environments

Phase 1: Accelerating
Phase 2: Cruising
Phase 3: Decelerating
Phase 4: Idling
Phase 5: Accelerating

DSRC Range (r)

Vehicle 1
Vehicle 2
Vehicle 3
Vehicles 2 & 3

Analysis boundary
System Activities: ECO-Signal Operation

Time-distance diagram of disorganized traffic through corridor

References:

Time-distance diagram of organized traffic through corridor using SPaT
Eco-Approach & Departure Experiment

Intersection

Start (+190 m)

End (-120 m)

Signal Controller
Human-Machine Interface

- Speedometer
- SPaT
- tachometer
- Advisory speed
- Real-time MPG
- Vehicle location indicator
- Distance to intersection
- Intersection location indicator
Eco-Approach & Departure Example Run

- Cycle length of 60 sec (26 green, 4 yellow, 30 red)
- The vehicle approached the intersection when the light was red. The application guided the driver to slow down early and cruise pass the intersection when the light turned green, avoiding a full stop.
System Activities:

- intelligent speed adaptation
- speed harmonization
- variable Speed Limits
- dynamic eco-driving
- platooning
- cooperative cruise control
Connected Eco-Driving Experiment

<table>
<thead>
<tr>
<th>Energy/Emissions</th>
<th>Non Eco-Driving</th>
<th>Eco-Driving</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuel (g)</td>
<td>1766</td>
<td>1534</td>
<td>-13%</td>
</tr>
<tr>
<td>CO2 (g)</td>
<td>5439</td>
<td>4781</td>
<td>-12%</td>
</tr>
<tr>
<td>CO (g)</td>
<td>97.01</td>
<td>50.47</td>
<td>-48%</td>
</tr>
<tr>
<td>HC (g)</td>
<td>3.20</td>
<td>1.90</td>
<td>-41%</td>
</tr>
<tr>
<td>NOx (g)</td>
<td>6.28</td>
<td>3.97</td>
<td>-37%</td>
</tr>
<tr>
<td>Travel time (min)</td>
<td>38.9</td>
<td>41.2</td>
<td>+6%</td>
</tr>
</tbody>
</table>

Vehicle automation could provide even better results.

Behavior Activities:

Focus on Behavior:
- eco-routing
- eco-driving
- smart parking
AERIS Preliminary Modeling Results

Eco-Approach and Departure at Signalized Intersections:

- In general, **5% - 10% fuel savings can be achieved for individual vehicles**
- Effectiveness is dependent on roadway conditions; **less effective with increased congestion**
- A small penetration rate has a positive network effect, where **non-equipped vehicles also receive a slight benefit**
- For a corridor that has already been optimized for mobility (e.g., coordinated traffic signals), the application only provides a slight improvement (1% - 3%) to mainline traffic flow
- The application is very **sensitive to communication range, but not communication delay**

Eco-Traffic Signal Timing:

- **At low connected vehicle penetration rates, there is not enough data to support optimization.** Modeling results indicated minimal or negative benefits compared to the baseline.
- **As connected vehicle penetration rates increase, modeling results indicated significant reductions in emissions and delay** compared to the baseline. Benefits appear to:
 - Increase significantly from 20% to 50% connected vehicle penetration levels
 - Remain consistent between 50% and 80% connected vehicle penetration levels
 - Increase significantly from 80% to 100% connected vehicle penetration levels
Take Away Points:

• ITS goals and strategies of improving safety and improving traffic performance (i.e. mobility) often reduce energy consumption and CO$_2$ emissions as a side benefit.

• Dedicated ITS strategies and systems can be designed to explicitly reduce energy consumption and CO$_2$ emissions: U.S. AERIS, Japan Energy ITS, EU EcoMove.

• Each ITS strategy can potentially reduce CO$_2$ emissions by approximately 5 – 15%; however with multiple strategies, greater savings can be achieved (ignoring induced demand).
Challenges:

• Better quantification tools and data are needed to quantify environmental impacts

• Environmental ITS research not only includes technology research but also *behavioral* research

• Trade-offs will exist between safety and ECO-ITS

• ITS applications need to consider travel demand management techniques to address potential induced demand effects